Gábor Szegő (Hungarian pronunciation: [ˈɡaːbor ˈsɛɡøː]) (January 20, 1895 – August 7, 1985) was a Hungarian mathematician. He was one of the foremost analysts of his generation and made fundamental contributions to the theory of Toeplitz matrices and orthogonal polynomials.
Contents |
Szegő was born in Kunhegyes, Hungary into a Jewish family. He married Anna Nemenyi in 1919, with whom he had two children.
In 1912 he started studies in mathematical physics at the University of Budapest, with summer visits to the University of Berlin and the University of Göttingen, where he attended lectures by Frobenius and Hilbert, amongst others. In Budapest he was taught mainly by Fejér, Beke, Kürschák and Bauer and made the acquaintance of his future collaborators George Pólya and Michael Fekete. His studies were interrupted in 1915 by the World War I, in which he served in the infantry, artillery and air corps. In 1918 while stationed in Vienna, he was awarded a doctorate by the University of Vienna for his work on Toeplitz determinants.[1][2] He received his Privat-Dozent from the University of Berlin in 1921, where he stayed until being appointed as successor to Knopp at the University of Königsberg in 1926. Intolerable working conditions during the Nazi regime resulted in a temporary position at the Washington University in Saint Louis, Missouri in 1936, before his appointment as chairman of the mathematics department at Stanford University in 1938, where he helped build up the department until his retirement in 1966. He died in Palo Alto, California.
Szegő's most important work was in analysis. He was one of the foremost analysts of his generation and made fundamental contributions to the theory of Toeplitz matrices and orthogonal polynomials. He wrote over 130 papers in several languages. Each of his four books, several written in collaboration with others, has become a classic in its field. The monograph Orthogonal polynomials, published in 1939, contains much of his research and has had a profound influence in many areas of applied mathematics, including theoretical physics, stochastic processes and numerical analysis.
At the age of 15, the young John von Neumann, recognised as a mathematical prodigy, was sent to study advanced calculus under Szegő. On their first meeting, Szegő was so astounded by von Neumann's mathematical talent and speed that he was brought to tears.[3] Szegő subsequently visited the von Neumann house twice a week to tutor the child prodigy. Some of von Neumann's instant solutions to the problems in calculus posed by Szegő, sketched out with his father's stationary, are now on display at the von Neumann archive at Budapest.[4]
Amongst the many honours received during his lifetime were: